
Basic Unix Tutorial
Matt Herman

Geodynamics Research Group
Penn State



Tutorial Objective
• This is designed to teach you enough to start 

using the Generic Mapping Tools
•  Just the tip of the iceberg!



Open the Terminal application
•  On a Mac: Applications -> Utilities -> Terminal



Open the Terminal application
•  On a Mac: Applications -> Utilities -> Terminal

“Command prompt”



Open the Terminal application
•  On a Mac: Applications -> Utilities -> Terminal

“Command prompt”

To run a command:
1.  Type the command
2.  Press <enter>



Navigating in the terminal
•  pwd: print present working directory

The command in
this case is “pwd”



Navigating in the terminal
•  pwd: print present working directory

/Users/mherman is my “home”
directory. When you open your
terminal, by default you start in
your home directory. “Directory”
is another term for a Folder.



Navigating in the terminal
•  ls: list contents of current directory

Now type “ls” to see what
files or subdirectories are
in my home directory.



Navigating in the terminal
•  ls: list contents of current directory

These are the files and directories
in my home directory.



Navigating in the terminal
•  cd: change directory

Let’s change directory
to the Desktop. Type in
“cd Desktop”

The syntax is always
“cd <directory>”. In other
words, cd requires the name
of a directory as an “argument.”



Check that directory was changed
with “pwd”

Navigating in the terminal
•  cd: change directory



List contents of 
directory with ls. 
You can see these 
match the items 
on my Desktop.

Navigating in the terminal
•  cd: change directory



Navigating in the terminal
•  cd: change directory

Two special directories 
are “.” and “..”
•  “.” is the current 

directory
•  “..” is the directory 

above the current 
one.



Navigating in the terminal
•  cd: change directory

Here I used “cd ..” to 
go up one directory, 
ending up back in 
my home directory.



Making a new directory
•  mkdir: make new directory

Back in the home directory, I typed 
“mkdir unix_tutorial” to make a 
new folder called unix_tutorial.

Note: avoid using spaces for file or 
directory names.



Making a new directory
•  mkdir: make new directory

We will work in this new directory. 
Change into unix_tutorial and 
verify the directory is clean and 
empty.



Manipulating files
•  touch: make a new blank file

Type in the command 
“touch file1” to create 
an empty file named 
“file1.” Verify that this 
file is now in your 
directory.



Manipulating files
•  cp: copy file

To duplicate a file, use 
the copy command:
“cp file1 file2”

This copies everything in file1 
into file2, and keeps file1.



Manipulating files
•  mv: move file

To rename a file, deleting the original, 
use the move command:
“mv file2 file3”



Manipulating files
•  rm: remove file (IRREVERSIBLE!)

To delete a file, use 
the rm command:
“rm file3”



Manipulating files
•  rm: remove file (IRREVERSIBLE!)

To delete a file, use 
the rm command:
“rm file3”

You cannot undo the “rm” 
operation. Once a file is 
deleted, it is gone forever 
(equivalent to emptying 
trash). Use with caution.



Input and output
•  echo: print following values to terminal screen

I am starting with a clean 
unix_tutorial directory. I 
removed the last file in the 
directory with “rm file1”



Input and output
•  echo: print following values to terminal screen

The echo command prints its 
arguments (whatever follows it) to 
the terminal screen. For example, 
typing

“echo 1 2 3 4” 

prints “1 2 3 4” on the next line.



Input and output
•  >: redirect output to a file (overwrite)

You can take this output and put it 
into a file instead of printing it to 
the terminal. This is done by using 
“>” (the redirect arrow). For 
example, to save the previous 
output into file1, use

“echo 1 2 3 4 > file1”



Input and output
•  cat: concatenate (print contents of) file

To verify that the file contains what 
we expect, type “cat file1”. This 
prints the contents of a file to the 
terminal screen.



Input and output
•  >>: redirect output to a file (append)

The single redirect arrow (“>”) 
overwrites the contents of the file. 
Verify this by typing in the 
command

“echo 5 6 7 8 > file1”



Input and output
•  >>: redirect output to a file (append)

To append (add on) to a file, use 
the double redirect arrow (“>>”).

“echo 9 10 11 12 >> file1”



Examining files
•  less/more: open a file for reading in the terminal

For very long files, it can be 
annoying to print everything to the 
terminal.



Examining files
•  less/more: open a file for reading in the terminal

The commands “less” and “more” 
open a text file instead of printing 
its contents (like “cat”). I prefer 
“less” but try both. To exit, press 
“q”.



Writing shell scripts
•  List commands in a text file, run all at once.

Imagine that you want to run 
several commands in a row, like 
shown above. It would be a pain to 
type them all into the terminal, 
especially if you wanted to run the 
series more than once.



Imagine that you want to run 
several commands in a row, like 
shown above. It would be a pain to 
type them all into the terminal, 
especially if you wanted to run the 
series more than once.

We can do this by typing the 
commands into a text file 
and running the file as a 
“shell script.”

Writing shell scripts
•  List commands in a text file, run all at once.



Side note: there are a lot of 
different plaintext editors out 
there, and they all have 
different features. The default 
Mac editor (TextEdit) is 
terrible. Use something else 
like TextWrangler (the editor 
shown here).

Writing shell scripts
•  List commands in a text file, run all at once.



The first line should always be 
“#!/bin/sh”. Don’t worry too 
much about what this means 
now. Just do it.

Writing shell scripts
•  List commands in a text file, run all at once.



Type in the commands you 
want to run, in order.

Writing shell scripts
•  List commands in a text file, run all at once.



Save the file into the folder 
where you are working. Call it 
“script.sh”

Writing shell scripts
•  List commands in a text file, run all at once.



Writing shell scripts
•  List commands in a text file, run all at once.

Return to your terminal, and 
type in “sh script.sh” (or 
whatever the name of your 
script is).



Writing shell scripts
•  List commands in a text file, run all at once.

Making changes to a 
sequence of commands is 
much easier with scripting.



Writing shell scripts
•  List commands in a text file, run all at once.

Making changes to a 
sequence of commands is 
much easier with scripting.

I wrote “17” instead of 
“16” like I wanted to.



Writing shell scripts
•  List commands in a text file, run all at once.

Variables make scripts very 
powerful and flexible. Use 
them often.



Writing shell scripts
•  List commands in a text file, run all at once.

Variables make scripts very 
powerful and flexible. Use 
them often.

Define variables with an 
“=“ (no spaces allowed)



Writing shell scripts
•  List commands in a text file, run all at once.

Variables make scripts very 
powerful and flexible. Use 
them often.

Call variables with a “$” 
sign in front of the name.



Writing shell scripts
•  List commands in a text file, run all at once.

Save the file!
Run it again!



Writing shell scripts
•  List commands in a text file, run all at once.

Try changing the variables, 
saving the file, and running 
again.



Writing shell scripts
•  List commands in a text file, run all at once.

Try changing the variables, 
saving the file, and running 
again.



Tutorial Complete
• You now have enough basic knowledge to 

begin learning GMT through our GMT tutorials.
• Remember, this is just the beginning. There is 

so much more to the Unix operating system 
and the more you know, the more cool things 
you can accomplish.

Good luck!


