
AWK

Why use awk?
•  Many datasets come in text files arranged

into rows (records) and columns (fields)
•  Tasks for this dataset:
– organize
– extract (some or all)
– do math on it

•  Awk does all of this and (much) more
•  Plus, it’s fast and portable

Why not Excel?
•  It’s made by Microsoft
•  Requires payment (awk is FREE!)
•  Have to open separate program, import

data, and export after analysis
•  Much slower, especially for big files

Before you start...
•  There are a couple datasets used in this

tutorial. You can download them at:

https://geodyn.psu.edu/tutorials/awk_datasets.zip

Print Statement
•  Baltimore Orioles

2014 season results
(baseball-reference.com)

Print Statement
•  Baltimore Orioles

2014 season results
(baseball-reference.com)

•  Who was the
opponent?

Print Statement
•  Baltimore Orioles

2014 season results
(baseball-reference.com)

awk ‘{print $3}’ 2014_orioles.txt !
	

•  Who was the
opponent?

Print Statement
•  Baltimore Orioles

2014 season results
(baseball-reference.com)

awk ‘{print $3}’ 2014_orioles.txt !
	

•  Who was the
opponent?

“Print the third field (column) in each
record (line) to the terminal”

Print Statement
•  Baltimore Orioles

2014 season results
(baseball-reference.com)

•  What about the
date in addition to
the opponent?

Print Statement
•  Baltimore Orioles

2014 season results
(baseball-reference.com)

•  What about the
date in addition to
the opponent?

awk ‘{print $2,$3}’ 2014_orioles.txt !

“Print the second and third fields
separated by a space to the terminal”

Print Statement
•  Baltimore Orioles

2014 season results
(baseball-reference.com)

•  What about the
date in addition to
the opponent?

awk ‘{print $2,$3}’ 2014_orioles.txt !

Try putting a space instead of a comma (I make this
mistake a lot).

Print Statement
•  Baltimore Orioles

2014 season results
(baseball-reference.com)

•  Rearrange the
dataset to W-L
record then date

Print Statement
•  Baltimore Orioles

2014 season results
(baseball-reference.com)

•  Rearrange the
dataset to W-L
record then date

awk ‘{print $7,$2}’ 2014_orioles.txt !

The fields don’t need to be in order,
and they can be repeated

Print Statement
•  Baltimore Orioles

2014 season results
(baseball-reference.com)

•  What if we wanted
everything?

Print Statement
•  Baltimore Orioles

2014 season results
(baseball-reference.com)

•  What if we wanted
everything?

awk ‘{print $0}’ 2014_orioles.txt !

“$0” stands for the entire record

Math in Awk
•  Displacements from

2011 M 9.0 Tohoku
earthquake

138˚

138˚

139˚

139˚

140˚

140˚

141˚

141˚

142˚

142˚

143˚

143˚

144˚

144˚

35˚ 35˚

36˚ 36˚

37˚ 37˚

38˚ 38˚

39˚ 39˚

40˚ 40˚

41˚ 41˚

42˚ 42˚

43˚ 43˚

1 meter

Time = 300 seconds

•  What do we need to
make this figure?

Math in Awk
•  Location, direction,

and magnitude

138˚

138˚

139˚

139˚

140˚

140˚

141˚

141˚

142˚

142˚

143˚

143˚

144˚

144˚

35˚ 35˚

36˚ 36˚

37˚ 37˚

38˚ 38˚

39˚ 39˚

40˚ 40˚

41˚ 41˚

42˚ 42˚

43˚ 43˚

1 meter

Time = 300 seconds

Station
ID

Coordinates N E Z
Displacement

Math in Awk
•  Addition x+y!
•  Subtraction x-y !
•  Multiplication x*y !
•  Division x/y !
•  Modulo x%y!
•  Exponentiation x^y!
•  Square root sqrt(x) !
•  Trig functions cos(x), sin(x), !

atan2(y,x) !
•  Exponential fns exp(x), log(x) !

Arguments are in
radians, not degrees.
No tangent function!

Natural logarithm

Math in Awk
•  Location, direction,

and magnitude

Station
ID

Coordinates N E Z
Displacement

E

N

az
mag

Math in Awk
•  Location, direction,

and magnitude

Station
ID

Coordinates N E Z
Displacement

awk ‘{ !
 print $2,$3,atan2($5,$4),sqrt($4*$4+$5*$5) !
}’ TIME_300.dat !

E

N

az
mag

Math in Awk
•  Location, direction,

and magnitude

Station
ID

Coordinates N E Z
Displacement

awk ‘{ !
 print $2,$3,atan2($5,$4),sqrt($4*$4+$5*$5) !
}’ TIME_300.dat !

E

N

az
mag

Note the different formatting; awk is
somewhat flexible in this regard.

Coordinates are easy
Returns angle in radians! Pythagoras strikes again

•  Grade assignments
>= 100: A+
90-100: A
80-90: B
70-80: C
60-70: D
< 60: F

Conditional Statement

•  Grade assignments
>= 100: A+
90-100: A
80-90: B
70-80: C
60-70: D
< 60: F

Conditional Statement

awk ‘{if ($2>=100) print $1,”A+”}’ grades.txt !

•  Grade assignments
>= 100: A+
90-100: A
80-90: B
70-80: C
60-70: D
< 60: F

Conditional Statement

awk ‘{if ($2>=100) print $1,”A+”}’ grades.txt !

Only print to terminal if the second
field is greater than or equal to 100

To print text, enclose it in double quotes

•  Grade assignments

Conditional Statement

awk ‘{ !
 if ($2>=100) print $1,”A+” !
 else if ($2>=90) print $1,”A” !
 else if ($2>=80) print $1,”B” !
 else if ($2>=70) print $1,”C” !
 else if ($2>=60) print $1,”D” !
 else print $1,”F” !
}’ grades.txt !

Conditional Statement
•  Baltimore Orioles

2014 season results
(baseball-reference.com)

•  What were the
attendance values?

Conditional Statement
•  Baltimore Orioles

2014 season results
(baseball-reference.com)

•  What were the
attendance values?

awk ‘{ !
 if (substr($3,1,1) != “@”) !
 print $11 !
}’ 2014_orioles.txt !

Conditional Statement
•  Baltimore Orioles

2014 season results
(baseball-reference.com)

•  What were the
attendance values?

awk ‘{ !
 if (substr($3,1,1) != “@”) !
 print $11 !
}’ 2014_orioles.txt ! “substr” takes three arguments:

(1) the field, (2) the position to
start, (3) number of characters

Conditional Statement
•  Baltimore Orioles

2014 season results
(baseball-reference.com)

•  What were the
attendance values?

awk ‘{ !
 if (substr($3,1,1) != “@”) !
 print $11 !
}’ 2014_orioles.txt ! Home Games

{ !
} !{ !

BEGIN and END
•  Baltimore Orioles

2014 season results
(baseball-reference.com)

•  What was the
average home
attendance?

awk ‘ !
BEGIN{tot=0;count=0} !
{if (substr($3,1,1) != “@”) {tot=tot+$11;count=count+1}} !
END{print tot/count}’ 2014_orioles.txt !

BEGIN and END
•  Baltimore Orioles

2014 season results
(baseball-reference.com)

•  Why do we need
BEGIN and END
here?

awk ‘ !
BEGIN{tot=0;count=0} !
{if (substr($3,1,1) != “@”) {tot=tot+$11;count=count+1}} !
END{print tot/count}’ 2014_orioles.txt !

Without BEGIN, variables tot and count are uninitialized

END allows you to do operations after finishing file

Maximum Displacement
•  Largest horizontal

displacement

138˚

138˚

139˚

139˚

140˚

140˚

141˚

141˚

142˚

142˚

143˚

143˚

144˚

144˚

35˚ 35˚

36˚ 36˚

37˚ 37˚

38˚ 38˚

39˚ 39˚

40˚ 40˚

41˚ 41˚

42˚ 42˚

43˚ 43˚

1 meter

Time = 300 seconds

Station
ID

Coordinates N E Z
Displacement

Maximum Displacement

138˚

138˚

139˚

139˚

140˚

140˚

141˚

141˚

142˚

142˚

143˚

143˚

144˚

144˚

35˚ 35˚

36˚ 36˚

37˚ 37˚

38˚ 38˚

39˚ 39˚

40˚ 40˚

41˚ 41˚

42˚ 42˚

43˚ 43˚

1 meter

Time = 300 seconds
awk ‘ !
 BEGIN{max=0} !
 { !
 mag = sqrt($4*$4+$5*$5) !
 if (mag > max) { !
 stid = $1 !
 stlo = $2 !
 stla = $3 !
 max = mag !
 } !
 } !
 END{ !
 print “STID”,stid !
 print “STLO”,stlo !
 print “STLA”,stla !
 print “MAX”,max !
 }’ TIME_300.dat !

Last Thing: Delimiters
•  What if fields are separated by something

besides whitespace?
– Contents of file.csv: 1,2,3,4,5,6,7,8,9

•  Use -Ffs (where fs is the file separator)

•  For a comma-separated variable (.csv) file:
awk -F, ‘{print $3}’ file.csv!

What’s Next?
•  Piping into awk (or from awk)

•  Scripting
•  Other powerful Unix commands (sed,

grep)
•  Regular expressions (steep learning

curve, incredible utility)
•  Plotting data (GMT, Python, gnuplot, etc.)

echo 3 4| awk ‘{print sqrt($1*$1+$2*$2)}’ !
Echo prints text to the terminal.
The vertical line “pipes” the output of echo into awk.

