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quadratic from acceleration
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Static Displacements from Strong Motion

We follow Boore et al. (2002) to correct for 
random, unknown baseline changes in 
acceleration records in an effort to recover 
static displacements:

0. Convert to m/s2. Perform zeroth-order 
correction, i.e. remove mean.

1. Integrate to velocity.
2. Fit a quadratic to velocity, constrained 

to zero at first motion.
3. Subtract derivative of quadratic from 

acceleration.
4. Integrate twice to obtain displacement 

time series.
We modify the technique by fitting a quadratic to the end of the velocity time series, 
because the drift at the end of the time series is a direct consequence of baseline 
shifts only. In contrast, the significant non-zero velocity during the accumulation of 
static displacement biases the quadratic fit.

Strong motion accelerometers can record broadband, large amplitude shaking 
on-scale in the near-field of large earthquake ruptures; however, numerical 
integration of such records to determine static displacement is typically unstable 
due to baseline changes (i.e. distortions in the zero value) during strong shaking. 

Strong Motion Records From Tohoku 
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To validate this correction scheme, we compare corrected and integrated surface 
and borehole acceleration records from the 2011 Mw 9.0 Tohoku earthquake 
(KiK-net) with collocated high-rate (1 hz) GPS observations.
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When baseline changes are 
severe, this simple correction 
scheme fails. These records are 
easily identifiable from the velocity 
time series. Borehole instruments 
are less susceptible to severe 
baseline changes, but near Tokyo, 
a major source of noise, both 
surface and borehole instruments 
were discarded.
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Static displacements from 1 Hz GPS (orange) and 
strong motion (blue, green). Channels identified as 
having severe baseline changes (left) are grayed out.
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Strong Motion Records From Iquique
Several strong motion instruments along the western coast of Chile recorded the 
near-field shaking from the 1 April 2014 Mw 8.2 Iquique earthquake. We used the 
same correction technique to generate static displacements (shown in blue) from 
these acceleration time series, and compare them to displacements predicted from 
a seismological finite fault model in an elastic half-space (orange).

Only one station (MNMCX) had velocity time series with severe enough drift to be 
discarded (below, left). Static displacements from stations PATCX, PB02, and PB11 
appear to match the FFM derived displacements well. Although station PSGCX had 
very little net drift in the velocity time series (below, right), the final static 
displacement in the east component (~2.0 m) was much larger than the predicted 
displacement (~0.4 m). This station was nearly coincident with the event centroid, 
which may account for the large accelerometer-derived static displacement.
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Can Strong Motion Observations Yield 
Reliable Static Displacements?

KiK-Net
Borehole

KiK-Net
Surface

Percent Correctable
(Reliable Displacement)

Percent of Remaining 
Matching GPS/FFM Prediction

Chile
Surface

~85% ~65% ~80%

~90% ~75% ~80%

In the worst case from these three datasets (surface instruments from KiK-Net), 
nearly 50% of the strong motion stations produced accurate coseismic static 
displacements, suggesting that a network of strong motion instruments can yield an 
accurate displacement field for large megathrust earthquakes. In addition, these 
corrected records contain the displacement time series, which may be used for 
constraining the coseismic rupture evolution from the near-field.

At The Limit - 2014 Iquique Foreshocks 
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This method is limited to instances of strong shaking that can be captured on an 
accelerometer. Low amplitude shaking from small events or at stations far from the 
source will not have reliable strong motion-derived static displacements. The minimum 
static displacements that we resolved from the Mw 8.2 Iquique dataset were ~20 cm.
The foreshock sequence 
preceding the Mw 8.2 Iquique 
earthquake began with an Mw 
6.7 earthquake on 16 March 
2014, west of the Mw 8.2 
centroid (yellow star). Although 
this earthquake generated 
shaking detected on the strong 
motion instrument at station 
GO01, its static displacements 
are too small to be confidently 
resolved by strong motion 
integration.

Slow or aseismic slip events also do not 
generate strong shaking, and are not recorded 
on strong motion instruments, despite potentially 
large displacements accumulating. These must 
be inferred from geodetic measurements, such 
as in the case of the foreshocks leading up to 
the 2014 Iquique earthquake.

The observed GPS displacements from 16 
March 2014 through 1 April 2014 are not 
completely accounted for by displacements from 
foreshock seismicity. Following Ruiz et al. 
(2014), we infer that aseismic slip must have 
occurred on the megathrust plate boundary to 
account for the extra observed displacement.
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Observed GPS Displacements (Ruiz et al., 2014; Schurr et al., 2014)
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These maps show the GPS displacements immediately before the 1 April 2014 Mw 8.2 Iquique 
main shock (blue), the cumulative displacements in an elastic half-space of the foreshocks (green), 
the difference vectors (obs-pre; orange), and the displacements predicted for the slow slip patch 
shown (pink). Note that it is difficult to account for the extra displacements at stations UTAR and 
CRSC unless the slow slip patch is updip of the foreshock sequence.
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