Case Study 2: 2014 Iquique Sequence

⊠USGS

M8.2 and Aftershocks Offshore Northern Chile Earthquake of 1 April 2014

TECTONIC SU

he April 1 earthquake occurred in a region of historic selencic quiescence – termed the northern Onlie or pulpa exernic gap. Historical records obtains a M 8.8 earthquake occurred within the lipsinger gap in 1877, which was generated investedants to the north gap in 18.8 e settinguake in 1988.

A count measure is servicely, ones has obscient in the accurate (of the April 1 extraplante Art ML 2 extraplante and instrume backing metabolismes obscience for the April 1 extraplante (Art ML 2 extraplante Art ML 2 R) and the application of ML 2. The theory of R and the application are to the accurate of the April 1 extraplante of ML 2 restrictions of ML 2. The theory of R and the application are application of the accurate of the April 1 extraplante of the April 1 extraplante of ML 2. The theory of the April 1 extraplante are applied to the April 1 extraplant of the April 1 extraplante of the April 1 extraplant of the April 1 extraplante applicant to the April 1 extraplante applied to the April 1 extraplante of the April 1 extraplante of the April 1 extraplante of the April 1 extraplante applicant to the April 1 extraplante applied to the April 1 extraplante of the April 1 extraplante applicant to the April 1 extraplante applied to the April 1 extraplante of the April 1 extre

On April 3, 1214 a M T A adventuols of the even operation of non-term. Only possible an event of through motion and the adventuols and the adventuol of the adv

EARTHQUAKE SUMMARY MAD Prepared in cooperation with the Global Sciencegraphic Network

Finite Fault Model

Databases of the antiplicate and direction of slig to subfact telements of the tauti cipstor model are between the time tensors of telescence baye availations and long periods carbina seases. Amount includes the antiplicate and instance of slig (of the telescence and long periods carbinal seases), then also includes the model with the source of the slight sease of the slight sease of the taution of the slight sease and the slight sease the slight sease of the slight sease slight sease (21 Am in the slight sease). The slight sease is the slight sease slight sease share a superior model sease and grades and 25 M in the the display television. The register subface is approximately 45 M is also grades and 25 M in the display television.

ad Tarthquada Information (Lanar nal Acceptional Date Canar metal Condex (1988) - 1988) and Graphiti and Villevelon, (1982) Ingelati and, (1988)		
Harved Accession Program	ROUGH N.C.	
INCLOSED FATLENDER.	Hind, P., 2007, Nor-sphered shybrid model of plane formulation transform, <i>Tamplega</i> , <i>Ecosyste</i> , 1, 4, no. 3, pp. 1927-00.	
hill, D. J. and Meson & L. 2012, A	Including to the second second second	DENCLASSING.
arnal of Temployina Rosenth, 4, 107, n Infordant Bannetika mlan, B.K., Argan, 101, 2016 arneti phan menons, Gangdyn J. Iao, 148, 1480	Subsectly 1986-1987, dog. 41 of Lat. W.H.K., and others, eds., Statematical European and Engineering Nationalogy, Perch. New York, N.Y., Disertor Academic Press, 947 p.	New suppliers, and a place ratio and po- locations, and in loss analytic has any control of the control interaction and he dentified by the special a factory effect of the state of the special sectory of the of a
EL Digital Charrol No. Worki Destr Conter D and VOCOBE Elevation Ministry	Exploit, U.B., Van der Wiler, R.D., and Bulland, R.P., 1998, Global schussionic anti-parket relations in the imperiod terror lines and providence. For daph deterministical, Mul. Natur. Nex. J. Nex. 9, 1021-103.	Nac uplied by 1.1. Society of Nacio Excellences Information Const High Data May Conference on a part May and agreed for others by Decise I

1 April 2014 11:08:43 UTC, Mw 8.2 earthquake

Santiago, Chile

• 16 March

- 16 March
- 17 March

- 16 March
- 17 March
- 22 March

- 16 March
- 17 March
- 22 March
- 23 March

- 16 March
- 17 March
- 22 March
- 23 March
- Prior to main shock

- 16 March
- 17 March
- 22 March
- 23 March
- Prior to main shock
- 1 April

- 16 March
- 17 March
- 22 March
- 23 March
- Prior to main shock
- 1 April
- 10 April

• Exercise: using the foreshocks Mw 6.0 and larger, predict the evolution of displacements at GPS stations along the Chile coast. Compare the total predicted horizontal displacements from all these foreshocks with the observed GPS displacements immediately prior to the 1 April Mw 8.2 main shock.

- Search the Global Centroid Moment Tensor catalog for the earthquake parameters you need
- www.globalcmt.org

Introduction and Explanation

The Global Centroid-Moment-Tensor (CMT) Project is overseen by Principal Investigator Göran Ekström and Co-Principal Investigator Meredith Nettles at the Lamont-Doherty Earth Observatory (LDEO) of Columbia University. The project was founded by Adam Dziewonski at Harvard University and operated there as the Harvard CMT Project from 1982-2006, led first by Prof. Dziewonski and later by Prof. Ekström. During the summer of 2006, the activities of the CMT Project moved with Prof. Ekström to LDEO. This research effort is moving forward under the name "The Global CMT Project". The main dissemination point for information and results from the project is the web site **www.globalcmt.org**. The CMT project has been continuously funded by the National Science Foundation since its inception, and is currently supported by award EAR-0824694.

Shallow earthquakes, 1976-2005.

How to cite the CMT catalog:

The Global CMT project is a research activity funded by the National Science Foundation, and we greatly appreciate users of the catalog including appropriate citations to our work in their published articles. Please see the following link for suggestions of the appropriate papers to cite depending on your usage of the catalog: how to cite the Global CMT catalog

Links to CMT resources:

CMT catalog web search

CMT catalog and Quick CMT ASCII files

Description of the CMT procedure

• recent article (2012) describing CMT processing procedures, results, and characteristics of the catalog through 2010

Special studies of particular earthquakes or sets of earthquakes

- · Glacial earthquakes
- <u>The 2010 Haiti earthquake sequence</u>
- The 2011 Off the Pacific Coast of Tohoku sequence
- The 2010-11 Gulf of Aden swarm

Current events detected using surface waves

Waveform Quality Center (WQC)

Cumulative moment of GCMT earthquakes

Search form

If you use CMT results in published work, please provide an appropriate citation; see here for information on how to cite the catalog. Thanks!

Enter parameters for CMT catalog search. All constraints are 'AND' logic.

Date constraints: catalog starts in 1976 and goes through present

There are several methods to choose date ranges--use the radio buttons to select which method you want to use

Starting Date:	Ending Date:
• Year: 2014 Month: 3 Day: 16	Year: 1976 Month: 1 Day: 1
○ Year: 1976 Julian Day: 1	○ Year: 1976 Julian Day: 1
	• Number of days: 16 Including starting
	day

Magnitude constraints: catalog includes moderate to large earthquakes only
(see note on calculation of magnitudes)
Moment magnitude: 6 <= Mw <= 10
Surface wave magnitude: $0 \le Ms \le 10$
Body wave magnitude: 0 <= mb <= 10
Location constraints:

Latitude: (degrees) from	atitude: (degrees) from -21		-19.5	Must be between -90 and 90		
Longitude: (degrees) from	n -71.5		to -70		Must be between -180 and 180	
Depth: (kilometers) from	0	t	0 1000			

Source time and mechanism constraints:

Search form

If you use CMT results in published work, please provide an appropriate citation; see here for information on how to cite the catalog. Thanks!

Enter parameters for CMT catalog search. All constraints are 'AND' logic.

Date constraints: catalog starts in 1976 and goes through present

There are several methods to choose date ranges--use the radio buttons to select which method you want to use

Starting Date:	Ending Date:
• Year: 2014 Month: 3 Day: 16	○ Year: 1976 Month: 1 Day: 1
O Year: 1976 Julian Day: 1	Vear: 1976 Julian Day: 1
	• Number of days: 16 Including starting day

Magnitude constraints: catalog includes moderate to large earthquakes only

(see note on calculated of magnitudes) Moment magnitude: $6 <= Mw <= 10$ Surface wave magnitude: $0 <= Ms <= 10$ Body wave magnitude: $0 <= mb <= 10$	Magnitude 6.0 and
Location constraints: Latitude: (degrees) from -21 to -19.5 Must be Longitude: (degrees) from -71.5 to -70 Must	between -90 and 90 st be between -180 and 180
Depth: (kilometers) from 0 to 1000	
Source time and mechanism constraints:	

Search form

If you use CMT results in published work, please provide an appropriate citation; see here for information on how to cite the catalog. Thanks!

Enter parameters for CMT catalog search. All constraints are 'AND' logic.

Date constraints: catalog starts in 1976 and goes through present

There are several methods to choose date ranges--use the radio buttons to select which method you want to use

Starting Date:	Ending Date:
• Year: 2014 Month: 3 Day: 16	Year: 1976 Month: 1 Day: 1
○ Year: 1976 Julian Day: 1	○ Year: 1976 Julian Day: 1
	• Number of days: 16 Including starting
	day

Global CMT Catalog

Search criteria:

Start date:	2014/3/16 End da	te: 2014/4/1
-21 <=lat<=	-19.5 -71	.5 <=lon<= -70
0 <=depth<=	1000 -9999	<=time shift<= 9999
0 <=mb<= 10	0<=Ms<= 10	6<=Mw<= 10
0 <=tension	plunge<= 90	0 <=null plunge<= 90

Results

201403162116A NEAR COAST OF NORTHERN C

```
Date: 2014/ 3/16 Centroid Time: 21:16:37.8 GMT

Lat= -19.94 Lon= -70.92

Depth= 12.0 Half duration= 5.3

Centroid time minus hypocenter time: 8.2

Moment Tensor: Expo=26 0.930 -0.680 -0.250 0.352 -0.875 0.295

Mw = 6.7 mb = 0.0 Ms = 6.7 Scalar Moment = 1.27e+26

Fault plane: strike=284 dip=26 slip=54

Fault plane: strike=144 dip=69 slip=106
```

201403170511A NEAR COAST OF NORTHERN C

```
Date: 2014/ 3/17 Centroid Time: 5:11:45.8 GMT

Lat= -20.01 Lon= -71.05

Depth= 17.8 Half duration= 3.8

Centroid time minus hypocenter time: 10.9

Moment Tensor: Expo=25 2.510 0.103 -2.610 0.839 -3.780 0.516

Mw = 6.4 mb = 0.0 Ms = 6.4 Scalar Moment = 4.67e+25

Fault plane: strike=352 dip=17 slip=94

Fault plane: strike=168 dip=73 slip=89
```

201403221259A NEAR COAST OF NORTHERN C

- Reminder from Chiang Rai, Thailand, case study: we usually know the *magnitude* of the earthquake, and have to estimate the *dimensions and slip* of the earthquake for use with O92UTIL
- Typically, both slip and fault area increase systematically with magnitude

Wells and Coppersmith (1994)

 O92UTIL implements several empirical relations, allowing the user to put magnitude in the input fault file instead of fault slip and dimensions

• Input fault file (fault.dat)

Same as previous input format

Input fault file (fault.dat)

o92util -mag fault.dat -sta station.dat....

(instead of o92util -flt fault.dat...)

- GPS stations on west coast of Chile
- What are the predicted horizontal displacements at these 5 stations?

- GPS stations on west coast of Chile
- What are the predicted horizontal displacements at these 5 stations?

• faults.dat:

-70.92 -19.94 12 284 26 54 6.7 -71.05 -20.01 18 352 17 94 6.4 -71.14 -19.73 19 346 20 90 6.2 -71.05 -19.70 22 350 21 100 6.2

• GPSloc.dat:

AEDA -70.178 -20.546 -4 2.9 ATJN -70.137 -19.301 -10 -7.2 CRSC -70.080 -20.918 -2.4 2.3 IQQE -70.132 -20.274 -7.9 1.1 PSGA -70.123 -19.597 -14.5 -3.5

• Exercise: model the stress change evolution on the subduction zone plate boundary resulting from the largest foreshocks. Were these events triggered? How do these earthquakes change the state of stress at the Mw 8.2 hypocenter?

- We have earthquake parameters from the previous exercise
- To resolve stresses, we need the <u>location</u> of the plate boundary at depth and the <u>kinematics</u> (orientation and slip direction) of the plate interface

- Use GRID to generate the locations for computing ΔCS on the plate boundary
- Recall:
 - GRID can create a horizontal or a dipping plane; which is more appropriate for a subduction zone plate boundary?
 - What is a good reference point for the grid?

- One option is to use a plate interface model to determine a reference point on the plane of interest
- For example, USGS Slab 1.0
- earthquake.usgs.gov/data/slab/

						-0 -
earthqu	ake.usgs.gov/data/sl	ab/				<u>x</u> Q 4
Y 🕺 🔲 Sports	s Comics TV	/Movies Science	Finance Bo	oks 🔄 Other 📃	Computing 🔄 Fo	ood 🔄 Anime
Cience for a changing	world	and part	willia www	k	USG Con Sea	S Home tact USGS rch USGS
arthquake Ha	azards Program		Home About l	Js Contact Us	Q	Sear
ARTHQUAKES	HAZARDS	DATA & PRODUC	CTS LEARN	MONITO	RING RES	EARCH
	historic earthquake c	atalogs, CMT solutions, ac	on-linear fit to data from tive seismic profiles, glo	a combined catalog co obal plate boundaries,	onsisting of several ind bathymetry and sedim	dependent data s nent thickness
	 Slab 1.0 Interact Download all sla Download all sla Hayes, G. P., D. Geophys. Res., T 	we Map b models in Neter Torme J. Wald, and R. L. Johnso 117, B01302, doi:10.1029/	tive seismic profiles, glo tive seismic profiles, glo ty the i action (2012), Slab1.0: A thr (2011JB008524.	a combined catalog co obal plate boundaries, nterac ee-dimensional model	onsisting of several ind bathymetry and sedim ctive m of global subduction z	tependent data s nent thickness
	 Slab 1.0 Interact Slab 1.0 Interact Download all sla Download all sla Hayes, G. P., D. Geophys. Res., 	based on a probabilistic no atalogs, CMT solutions, ac <u>we Map</u> b models in Netter Torma J. Wald, and R. L. Johnso 117, B01302, doi:10.1029/ 201 Depth Grid	tive seismic profiles, glo tive seismic profiles, glo ty the i <u>trought for the intervention</u> (2012), Slab1.0: A thr (2011JB008524.	a combined catalog ca obal plate boundaries, Interac ee-dimensional model Dip Grid	onsisting of several ind bathymetry and sedim ctive m of global subduction z Contours	Appendent data s nent thickness DAD zone geometries, Model Limit
	 Slab 1.0 Interact Slab 1.0 Interact Download all sla Download all sla Hayes, G. P., D. Geophys. Res., Show More Information Region 	based on a probabilistic no atalogs, CMT solutions, ac <u>we Map</u> <u>b models in Network roman</u> <u>J. Wald, and R. L. Johnso</u> 117, B01302, doi:10.1029/ on Depth Grid as Last Updated: Nove	tive seismic profiles, glo tive seismic profiles, glo ty the i to (2012), Slab1.0: A thr (2011JB008524. Strike Grid ember 16, 2011	a combined catalog co obal plate boundaries, nterac ee-dimensional model Dip Grid	onsisting of several ind bathymetry and sedim ctive m of global subduction z Contours	dependent data so nent thickness Dap zone geometries, Model Limit
	 Slab 1.0 Interact Slab 1.0 Interact Download all sla Download all sla Download all sla Hayes, G. P., D. Geophys. Res., T Show More Information Region Alaska-Aleutian See detailed figure [JPEG] [PDF - 12.4	Desced on a probabilistic no atalogs, CMT solutions, ac we Map b models in Sector b models in Net J. Wald, and R. L. Johnsoi 117, B01302, doi:10.1029/2 on Depth Grid Is Last Updated: Nove NetCDF - 7 MB alu_slab1.0_clip.grd [1] MB]	tive seismic profiles, glo tive seismic profiles, glo tive seismic profiles, glo ty the i ty	a combined catalog ca obal plate boundaries, Internace ee-dimensional model Dip Grid <u>NetCDF - 7 MB</u> alu_slab1.0_dipclip.grd [1]	Contours ASCII - 471.3 KB alu_contours.in [3] ArcGIS Shapefile -	Appendent data s nent thickness Dap zone geometries, Model Limi Perimeter - 9 KB alu_slab1.0.cli [4]

- Using the Mw 8.2 centroid as the reference coordinate (-70.5°E, -19.8°N), Slab 1.0 gives a depth for the plate boundary at this point of 36 km
- Also yields strike and dip; are these values consistent with the foreshock kinematics?

- Exercise: model the stress change on the plate interface resulting from the 1 April main shock. How does this compare to the location of the 3 April Mw 7.7 aftershock?
- You can find the FFM on the USGS website.

					iquique_2014.ffm	~			
		iquique_2014.	ffm						
F	1	#Total number of	fault segments=	5					
	2	#Fault segment =	1 nx(Along-str	ike)= 20 Dx=	12.00km ny(down	dip)= 4 Dy= 10	.00km		- 11
	3	#Boundary of Fau	lt segment 1.	EQ in cell 12	,4. Lon: -70.86	34 Lat: -19.62	298		- 11
	4	#Lon. Lat. Dep	th	•	•				- 11
	5	-70.87280	-20.88790	17.21850					- 11
	6	-71.38010	-18.81860	17.21850					- 11
	7	-71.04820	-18.74640	25.77820					- 11
	8	-70.54090	-20.81580	25.77820					- 11
	9	-70.87280	-20.88790	17.21850					
	10	#Lat. Lon. depth	slip rake strike	dip t_rup h_d	ur mo				
	11	-20.887900	-70.872800	17.218500	14.849220	79.422050	347.000000	13.500000	
	12	-20.782700	-70.898600	17.218500	14.312710	93.683830	347.000000	13.500000	
	13	-20.677500	-70.924400	17.218500	124.392900	135.544100	347.000000	13.500000	
	14	-20.572300	-70.950200	17.218500	164.064610	133.572910	347.000000	13.500000	
	15	-20.467100	-70.976000	17.218500	155.227100	136.262500	347.000000	13.500000	
	16	-20.361800	-71.001800	17.218500	13.849600	88.412810	347.000000	13.500000	
	17	-20.256600	-71.027600	17.218500	33.400850	114.332100	347.000000	13.500000	
	18	-20.151400	-71.053400	17.218500	13.635950	86.873340	347.000000	13.500000	
	19	-20.046200	-/1.0/9200	17.218500	10.225030	100.624800	347.000000	13.500000	
	20	-19.940900	-/1.105000	17.218500	124.700900	109.052000	347.000000	13.500000	
	21	-19.835/00	-/1.130800	17.218500	1.924900	121.025000	347.000000	13.500000	
	22	-19./30300	-/1.100000	17.218500	3.033300	82.3302/0	347.000000	13.500000	
	23	-19.025500	-71.102500	17 210500	2 229010	20 212040	347.000000	13.500000	
	24	-19.520000	-71 233000	17 218500	131 028410	78 548540	347.000000	13 500000	
	25	-19.309600	-71.259700	17.218500	228.784500	80.433100	347.000000	13.500000	
	27	-19,204400	-71,285500	17.218500	218,679500	77.302260	347.000000	13.500000	
	28	-19,099100	-71.311300	17.218500	44.104390	115,923600	347.000000	13.500000	
	29	-18,993900	-71.337100	17.218500	26.272020	86,180990	347.000000	13.500000	
	30	-18,888700	-71.362900	17.218500	47,487590	115,102700	347.000000	13,500000	
	31	-20.868300	-70.782300	19.552900	4.816710	91.781960	347.000000	13.500000	
	32	-20.763000	-70.808100	19.552900	55.566740	78.940600	347.000000	13.500000	
	33	-20.657800	-70.833900	19.552900	114.640100	79.548490	347.000000	13.500000	
	34	-20.552600	-70.859700	19.552900	129.108600	125.430700	347.000000	13.500000	
	35	-20.447400	-70.885500	19.552900	65.343400	97.159540	347.000000	13.500000	
	36	-20.342100	-70.911300	19.552900	19.472960	121.956100	347.000000	13.500000	
	37	-20.236900	-70.937100	19.552900	11.742210	87.873300	347.000000	13.500000	
	38	-20.131700	-70.962900	19.552900	17.585190	113.560600	347.000000	13.500000	
	39	-20.026500	-70.988700	19.552900	15.518210	103.615400	347.000000	13.500000	
	40	-19.921300	-71.014500	19.552900	53.217250	120.369600	347.000000	13.500000	
	41	-19.816000	-71.040200	19.552900	4.997290	98.043730	347.000000	13.500000	
	42	-19.710800	-71.066000	19.552900	15.300550	123.103500	347.000000	13.500000	
	43	-19.605600	-71.091800	19.552900	62.859020	78.243420	347.000000	13.500000	
	44	-19.500400	-71.117600	19.552900	5.251690	84.176060	347.000000	13.500000	
	45	-19.395100	-71.143400	19.552900	5.510640	117.067500	347.000000	13.500000	
	46		-/1 160/00		/ / / KN 1 KM				

o92util -ffm iquique_2014.ffm...

- Noisy colors!
- Two reasons:
 - Slip in every subfault
 - Using one plane instead of plate boundary with changing dip

• Exercise: What does the stress change from the 1 April main shock look like in cross-section?

